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Abstract

Alzheimer's disease (AD) is the most common cause of dementia in older adults. By the time an 

individual has been diagnosed with AD, it may be too late for potential disease modifying therapy 

to strongly influence outcome. Therefore, it is critical to develop better diagnostic tools that can 

recognize AD at early symptomatic and especially pre-symptomatic stages. Mild cognitive 

impairment (MCI), introduced to describe a prodromal stage of AD, is presently classified into 

early and late stages (E-MCI, L-MCI) based on severity. Using a graph-based semi-supervised 

learning (SSL) method to integrate multimodal brain imaging data and select valid imaging-based 

predictors for optimizing prediction accuracy, we developed a model to differentiate E-MCI from 

healthy controls (HC) for early detection of AD. Multimodal brain imaging scans (MRI and PET) 

of 174 E-MCI and 98 HC participants from the Alzheimer's Disease Neuroimaging Initiative 

(ADNI) cohort were used in this analysis. Mean targeted region-of-interest (ROI) values extracted 

from structural MRI (voxel-based morphometry (VBM) and FreeSurfer V5) and PET (FDG and 

Florbetapir) scans were used as features. Our results show that the graph-based SSL classifiers 

outperformed support vector machines for this task and the best performance was obtained with 

66.8% cross-validated AUC (area under the ROC curve) when FDG and FreeSurfer datasets were 
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integrated. Valid imaging-based phenotypes selected from our approach included ROI values 

extracted from temporal lobe, hippocampus, and amygdala. Employing a graph-based SSL 

approach with multimodal brain imaging data appears to have substantial potential for detecting E-

MCI for early detection of prodromal AD warranting further investigation.
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1 Introduction

Alzheimer's disease (AD) is a progressive neurodegenerative disease in older adults and at 

this time, despite incidence rates doubling every 5 years after the age of 65, there is no 

effective disease modifying treatment for AD to date [1]. AD is predicted to affect 14 

million Americans by the year 2050 (www.alz.org) and has become a national priority. The 

detection and diagnosis of AD at the earliest possible stage is of fundamental importance as 

early intervention could potentially delay progression to AD and achieve effective disease 

modification. One of main challenges is to identify and validate biomarkers of AD 

progression leading to an improved early diagnosis at early symptomatic and especially pre-

symptomatic stages. To this end, the concept of mild cognitive impairment (MCI) was 

introduced [2]. MCI can be classified into early and late stages (E-MCI, L-MCI) based on 

severity. MCI is thought to be a precursor to the development of early AD, and subjects with 

late amnestic MCI have a highly elevated probability of developing AD with a conversion 

rate of approximately 15% per year [3, 4].

New approaches to the search for specific biomarkers to detect MCI/AD compared to 

healthy controls (HC) have been developed, with neuroimaging (MRI and PET) and 

cerebrospinal fluid (CSF) biochemical markers showing particular promise [5, 6]. However, 

in most studies, only patients with L-MCI and AD have been assessed [7]. In order to 

identify better diagnostic tools that can recognize AD at early symptomatic and especially 

pre-symptomatic stages, we developed a graph-based semi-supervised learning model to 

differentiate E-MCI from HC for early detection of AD using multimodal brain imaging 

scans (MRI and PET) of participants from the ongoing Alzheimer's Disease Neuroimaging 

Initiative (ADNI).

The semi-supervised learning (SSL) which recently emerged in the machine learning 

domain, employs a strategy halfway between supervised and unsupervised learning schemes 

to improve classification performance [8-11]. In particular, the graph-based SSL takes 

advantage of computational efficiency and representational ease for the biomedical data. 

Because of the graph structures, it is easy to integrate different types of data for better 

explaining clinical outcomes [12]. The learning time of graph-based SSL is nearly linear 

with the number of graph edges while the accuracy remains comparable to the kernel-based 

methods that suffer from the relative disadvantage of a longer learning time [13, 14]. In 

addition, the interpretation of biological phenomena can be improved because of the graph 

structure [15-17], which naturally fits into the graph-based SSL.

Kim et al. Page 2

Multimodal Brain Image Anal (2013). Author manuscript; available in PMC 2014 November 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.alz.org


2 Materials and Methods

2.1 Data

Samples—The Alzheimer's Disease Neuroimaging Initiative initial phase (ADNI-1) was 

launched in 2003 to test whether serial magnetic resonance imaging (MRI), position 

emission tomography (PET), other biological markers, and clinical and neuro-psychological 

assessment could be combined to measure the progression of MCI and early AD. This multi-

site longitudinal study was intended to aid researchers and clinicians develop new treatments 

for MCI and early AD, monitor their effectiveness, and lessen the time and cost of clinical 

trials. The ADNI-1 has been extended to its subsequent phases (ADNI-GO and ADNI-2) for 

follow-up for existing participants and additional new enrollments. Inclusion and exclusion 

criteria, clinical and neuroimaging protocols, and other information about ADNI have been 

published previously and can be found at www.adni-info.org [18-20]. Demographic 

information, raw scan data, APOE and GWAS genotypes, neuropsychological test scores, 

and diagnostic information are available from the ADNI data repository (http://

www.loni.ucla.edu/ADNI/). Individuals included in this study were 174 E-MCI (early MCI) 

and 98 HC (healthy older adults) participants in ADNI-GO or ADNI-2.

Image processing—All available baseline 3T structural brain MRI scans were 

downloaded from the ADNI database. As detailed in previous studies [18, 19], two widely 

employed automated MRI analysis techniques were independently used to process MRI 

scans: whole-brain voxel-based morphometry (VBM) implemented in the Statistical 

Parametric Mapping 8 (SPM8) software to extract mean grey matter (GM) density for target 

regions of interest (ROIs) and FreeSurfer version 5.1 to extract mean cortical thickness and 

volumetric measure for target ROIs. Pre-processed Florbetapir (also known as AV-45 and 

Amyloid) PET scans to assess brain amyloid β burden were downloaded from the ADNI 

database. For each scan, mean regional SUVR (standardized uptake value ratio) values were 

extracted for target ROIs using MarsBaR in SPM8, as detailed in previous study [7, 18]. 

FDG-PET was used to measure the brain's rate of glucose metabolism with the tracer [18F] 

Fluorodeoxyglucose. FDG-PET ROI data was downloaded from the ADNI database. All 

MRI ROI values were adjusted for the baseline age, gender, education, and intracranial 

volume (ICV) using a regression model, prior to analyses. All the ROI values of Florbetapir 

and FDG PET were adjusted for the baseline age, gender, and education.

2.2 Classification of Early Mild Cognitive Impairment (E-MCI)

The semi-supervised learning uses both labeled and unlabeled data to improve on the 

performance of supervised learning. There are several types of SSL algorithms, and the 

graph-based SSL was used in our study. If two patients’ samples were more closely related 

to others, the algorithm assumed that the diagnosis of E-MCI from those two patients is 

more likely to be similar. Thus, the classification of E-MCI can be enhanced by considering 

similarities between patient samples. A natural method of analyzing relationships between 

entities is a graph, where nodes represent participants and edges show their possible 

relations. Figure 1 represents an example graph, which was conducted using the brain 

imaging data. An annotated participant is labeled either by ‘-1’ or ‘1’, indicating the two 

possible clinical outcomes, either ‘healthy older adult’ or ‘E-MCI’. In order to predict the 
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label of the unannotated patient ‘?’, the edges connected from/to the patient play an 

important role in influencing propagation of the relation between the patient and its 

neighbors. This idea can be easily formulated using a graph-based semi-supervised learning 

[8]. Edges represent relations, more specifically similarities between participants that may 

be extracted from different brain imaging data. Different brain imaging data produce 

different graphs. Thus, the classification of E-MCI can be benefit by integrating diverse 

graphs from multimodal brain imaging data, i.e., incomplete information and noise. 

Technically, the data-setup of our experiment for the binary classification can be rephrased 

as  where xn ∈ Rd (d is the number of features and N is the number of 

participants) and yn ∈ {−1, 1}.

Graph-based semi-supervised learning—In the graph-based SSL [8], a participant xi 

(i = 1,...,n) is represented as a node i in a graph, and the relationship between participants is 

represented by an edge. The edge strength from each node j to other node i is encoded in 

element wij of a n × n symmetric weight matrix W. A Gaussian function of Euclidean 

distance between participants, with length scale hyperparameter σ, is used to specify 

connection strength:

(1)

Nodes i and j are connected by an edge if i is in j's k-nearest-neighborhood or vice versa. 

Thus, nearby participants in Euclidean spaces are assigned large edge weights.

The labeled nodes have labels yl ∈ {-1, 1}, while the unlabeled nodes have zeros yu = 0. The 

graph-based SSL will output an n-dimensional real-valued vector 

, which can be thresholded to make label 

predictions on fl=f1,...,fn after learning. It is assumed that fi should be close to the given label 

yi in labeled nodes (loss condition), and overall, fi should not be too different from the fi of 

adjacent nodes (smoothness condition). One can obtain f by minimizing the following 

quadratic functional [8, 9, 11]:

(2)

where y=(y1,...,yl, 0,...0)T, and the matrix L, called the graph Laplacian matrix [21], is 

defined as L = D – W where D = diag(di), di= Σjwij. The parameter μ trades off loss versus 

smoothness. The solution of this problem is obtained as

(3)

where I is the identity matrix.
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2.3 Integration of Multi-Modal Brain Imaging Dataset

In order to combine the graphs from multimodal brain imaging data, four graphs can be 

integrated from finding optimum combination coefficients. Information from each graph is 

regarded as partially independent from and partly complementary to others. Reliability may 

be enhanced by integrating all available data sources using the graph-based SSL, which has 

been applied to the extended problem of protein function prediction [22] and clinical 

outcome prediction using multi-levels of genomic data [12]. Based on the method, the 

integration of multiple graphs is used to find an optimum value of the linear combination 

coefficient for the individual graphs (Fig. 2). This corresponds to finding the combination 

coefficients α for the individual Laplacians of the following mathematical formulation:

(4)

, where K is the number of graphs and Lk is the corresponding graph-Laplacian of graph Gk. 

Similar to the output prediction for single graphs, the solution is obtained by

(5)

3 Results

3.1 Experiment Setting

The receiver operating characteristic (ROC) curve plots sensitivity (true positive rate) as a 

function of 1-specificity (false positive rate) for a binary classifier system as its 

discrimination threshold is varied [23]. An ROC score of 0.5 corresponds to random 

prediction, and an ROC score of 1.0 implies that the model succeeded in putting all of the 

positive examples before all of the negatives. For each dataset, we calculated area under the 

curve (AUC) of ROC as a performance measure. In order to avoid the overfitting, five-fold 

cross-validation was conducted. Since some of the brain imaging dataset is high dimensional 

and noisy, and contains many redundant features, which may incur computational difficulty 

and low accuracy, a Student t-test based feature selection method was used [24]. Even 

though there are many feature selection techniques such as filter, wrapper, and embedded 

method [25], a simple univariate feature selection method was used in order to emphasize 

not the effect of feature selection but the effect of integration of multimodal brain imaging 

data. The values of SSL model parameters, k from Equation (1) and μ from Equation (3), 

were determined by the results of search over k ∈ {3, 4, 5, 6, 7, 8, 9, 10, 20, 30} and μ ∈ 

{0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 10, 100, 1000}. The 

optimized combination of model parameters was selected when the greatest AUC was 

obtained.

3.2 Experiment Results

With multimodal brain imaging data, we provide empirical comparison results about which 

type of brain imaging data is more informative to a given classification problem for 
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diagnosis of E-MCI. Figure 3 shows the AUC performance on the classification of E-MCI. 

The averages of five-fold AUCs from Florbetapir, FDG, FreeSurfer, and VBM are shown in 

the figure. Among four types of brain imaging dataset, the performance of FreeSurfer 

dataset showed the best single modality performance with 0.6576 AUC. In Figure 3, AUC 

increases in the order of the following dataset, FreeSurfer > VBM > FDG > Florbetapir.

3.3 Integration Effects

Since different brain imaging data contain partly independent and partly complementary 

information content, we integrated across multi-modal brain image datasets for better 

prediction of E-MCI. We found that multivariate integration across different brain imaging 

modalities increased the prediction performance for patients with EMCI. Figure 4 shows the 

results of the integration with all combination of different types of brain imaging dataset. 

The model combining Florbetapir and VBM (0.6322 AUC) outperformed the model with 

VBM only (0.609 AUC). In addition, the integration with FDG and FreeSurfer showed the 

best performance among all combination of four different types of brain imaging dataset 

with 0.6681 AUC. However, the integration with all four types of brain image data included 

did not show the best performance.

3.4 Comparison with SVM

The performance from graph-based SSL classifiers was compared with Support Vector 

Machine (SVM) performance. SVM involves finding an optimal decision boundary, i.e., 

maximizing the margin by finding the largest achievable distance among the separating 

hyperplane and the data points on either side. If the data points are separated by a non-linear 

hyperplane because of some intrinsic property of the problem, it is more appropriate to map 

the input feature space to a high-dimensional feature space where the data points are 

separated by a linear hyperplane. This mapping process is conducted by kernel functions. 

Among kernel functions, the Radial Basis Function (RBF) kernel was used with a wide 

range of sigma, from 10−6 to 1, in order to select the best model. In order to fairly compare 

the performance, we used the same set of features, which was used in the graph-based SSL. 

The models from the graph-based SSL outperformed the models from SVM except for 

Florbetapir data (Table 1). The Wilcoxon signed-rank test was used to assess the 

significance level of difference in performance between the results of the graph-based SSL 

and SVM [26]. The model with FreeSurfer dataset from the graph-based SSL showed 

significantly better than the one from SVM.

4 Discussions and Conclusions

Using automatic whole-brain ROI analysis techniques and a graph-based semi-supervised 

learning (SSL) method, we developed a classification model to differentiate E-MCI from 

HC for early detection of AD. In this study, we used MRI (FreeSurfer and VBM) and PET 

(Florbetapir and FDG) scans from 174 E-MCI and 98 HC in the ADNI cohort. The graph-

based SSL technique was used to integrate multi-modal brain imaging data and select 

imaging-based phenotypes for optimizing E-MCI prediction accuracy. The data integration 

framework for multimodal brain imaging data has scalability to easily extend to additional 

types of brain imaging data. In addition, it preserves type-specific properties from the brain 
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imaging data since the matrices from different types of brain imaging data were not simply 

merged but combined after conversion into a graph for the integration (Fig. 2).

Our results showed that 1) the graph-based SSL classifiers outperformed support vector 

machines (SVM) for this task; 2), we obtained the best results when using ROI values 

extracted by FreeSurfer from structural MRI scans; (3) the overall best performance was 

obtained with 66.8% cross-validated AUC when FDG PET and FreeSurfer data were 

combined; (4) the integration with all four types of brain image data included did not show 

the best performance; and (5) selected imaging-based phenotypes included ROI values 

extracted from temporal lobe, hippocampus, and amygdala. It has been showed that regional 

brain atrophy occurs initially and most severely in the entorhinal cortex and hippocampus 

before spreading throughout the neocortex [27]. These findings suggest that the predictive 

model may be combined with various data sources from different types of brain imaging 

data. Integration of independent or complementary information content may improve the 

chances of successful early diagnosis of AD. The graph-based SSL approach with 

multimodal brain imaging data has substantial potential for enhanced early detection of AD.

Acknowledgments

Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) 
(National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Institute on Aging, the 
National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the 
following: Abbott; Alzheimer's Association; Alzheimer's Drug Discovery Foundation; Amorfix Life Sciences Ltd.; 
AstraZeneca; Bayer HealthCare; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; 
Elan Pharmaceuticals Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company 
Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; Janssen Alzheimer Immunotherapy Research & Development, 
LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; 
Meso Scale Diagnostics, LLC.; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Servier; Synarc Inc.; and Takeda 
Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical 
sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health 
(www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the 
study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. 
ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles. 
This research was also supported by NIH grants P30 AG010129, K01 AG030514, and the Dana Foundation.

Samples from the National Cell Repository for AD (NCRAD), which receives government support under a 
cooperative agreement grant (U24 AG21886) awarded by the National Institute on Aging (NIA), were used in this 
study. Additional support for data analysis was provided by NLM K99 LM011384, NIA R01 AG19771, P30 
AG10133, NCI R01 CA101318, NLM R01 LM011360, NSF IIS-1117335, and RC2 AG036535, and U01 
AG032984 from the NIH, Foundation for the NIH, and NINDS (R01NS059873).

References

1. Alzheimer's A, Thies W, Bleiler L. 2011 Alzheimer's disease facts and figures. Alzheimer's & 
dementia : the journal of the Alzheimer's Association. 2011; 7:208–244.

2. Petersen RC, Smith GE, Waring SC, et al. Mild cognitive impairment: clinical characterization and 
outcome. Archives of neurology. 1999; 56:303–308. [PubMed: 10190820] 

3. Stephan BC, Hunter S, Harris D, et al. The neuropathological profile of mild cognitive impairment 
(MCI): a systematic review. Mol Psychiatry. 2012; 17:1056–1076. [PubMed: 22143004] 

4. Petersen RC, Roberts RO, Knopman DS, et al. Mild cognitive impairment: ten years later. Archives 
of neurology. 2009; 66:1447–1455. [PubMed: 20008648] 

5. Wang H, Nie F, Huang H, Kim S, Nho K, et al. Identifying quantitative trait loci via group-sparse 
multitask regression and feature selection: an imaging genetics study of the ADNI cohort. 
Bioinformatics. 2012; 28:229–237. [PubMed: 22155867] 

Kim et al. Page 7

Multimodal Brain Image Anal (2013). Author manuscript; available in PMC 2014 November 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.fnih.org


6. Meda SA, Narayanan B, Liu J, Perrone-Bizzozero NI, et al. A large scale multivariate parallel ICA 
method reveals novel imaging-genetic relationships for Alzheimer's disease in the ADNI cohort. 
NeuroImage. 2012; 60:1608–1621. [PubMed: 22245343] 

7. Risacher SL, Kim S, et al. The role of apolipoprotein E (APOE) genotype in early mild cognitive 
impairment (E-MCI). Frontiers in aging neuroscience. 2013; 5:11. [PubMed: 23554593] 

8. Zhou D, Bousquet O, Weston J, Scholkopf B. Learning with local and global consistency. Advances 
in Neural Information Processing Systems (NIPS). 2004; 16:321–328.

9. Belkin M. Regularization and Semi-supervised Learning on Large Graphs. Proceedings of the 17th 
Annual Conference on Learning Theory (COLT) 3120. Lecture Notes in Computer Science. 
2004:624–638.

10. Zhu, X.; Ghahramani, Z.; Lafferty, J. Semi-supervised learning using Gaussian fields and harmonic 
functions; Proceedings of the Twenty-first International Conference on Machine Learning 
(ICML); Washington, DC. AAAI Press; 2003. p. 912-919.

11. Chapelle O, Weston J, Scholkopf B. Cluster kernels for semi-supervised learning. Advances in 
Neural Information Processing Systems (NIPS). 2003; 15:585–592.

12. Kim D, Shin H, Song YS, Kim JH. Synergistic effect of different levels of genomic data for cancer 
clinical outcome prediction. J Biomed Inform. 2012; 45:1191–1198. [PubMed: 22910106] 

13. Tsuda K, Shin H, Scholkopf B. Fast protein classification with multiple networks. Bioinformatics. 
2005; 21(Suppl 2):ii59–65. [PubMed: 16204126] 

14. Shin, H.; Tsuda, K. Prediction of Protein Function from Networks.. In: Chapelle, Olivier; 
Schölkopf, Bernhard; Zien, Alexander, editors. Semi-Supervised Learning. MIT press; 2006. p. 
339-352.Chapter 20

15. Spellman PT, Sherlock G. Comprehensive identification of cell cycle-regulated genes of the yeast 
Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell. 1998; 9:3273–3297. 
[PubMed: 9843569] 

16. Segal E, Shapira M, et al. Module networks: identifying regulatory modules and their condition-
specific regulators from gene expression data. Nat Genet. 2003; 34:166–176. [PubMed: 12740579] 

17. Ohn JH, Kim J, Kim JH. Genomic characterization of perturbation sensitivity. Bioinformatics. 
2007; 23:i354–358. [PubMed: 17646317] 

18. Risacher SL, Shen L, West JD, et al. Longitudinal MRI atrophy biomarkers: relationship to 
conversion in the ADNI cohort. Neurobiology of aging. 2010; 31:1401–1418. [PubMed: 
20620664] 

19. Risacher SL, Saykin AJ, West JD, et al. Baseline MRI predictors of conversion from MCI to 
probable AD in the ADNI cohort. Current Alzheimer research. 2009; 6:347–361. [PubMed: 
19689234] 

20. Weiner MW, Veitch DP, et al. The Alzheimer's Disease Neuroimaging Initiative: a review of 
papers published since its inception. Alzheimer's & dementia : the journal of the Alzheimer's 
Association. 2012; 8:S1–68.

21. Chung FRK. Spectral Graph Theory. Number 92 in Regional Conference Series in Mathematics. 
1997

22. Shin H, Lisewski AM, Lichtarge O. Graph sharpening plus graph integration: a synergy that 
improves protein functional classification. Bioinformatics. 2007; 23:3217–3224. [PubMed: 
17977886] 

23. Gribskov M, Robinson NL. Use of receiver operating characteristic (ROC) analysis to evaluate 
sequence matching. Comput Chem. 1996; 20:25–33. [PubMed: 16718863] 

24. Jafari P, et al. An assessment of recently published gene expression data analyses: reporting 
experimental design and statistical factors. BMC Med Inform Decis Mak. 2006; 6:27. [PubMed: 
16790051] 

25. Saeys Y, Inza I, Larranaga P. A review of feature selection techniques in bioinformatics. 
Bioinformatics. 2007; 23:2507–2517. [PubMed: 17720704] 

26. Demsar J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine 
Learning Research. 2006; 7:1–30.

Kim et al. Page 8

Multimodal Brain Image Anal (2013). Author manuscript; available in PMC 2014 November 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



27. Scahill RI, Schott JM, et al. Mapping the evolution of regional atrophy in Alzheimer's disease: 
unbiased analysis of fluid-registered serial MRI. Proc Natl Acad Sci U S A. 2002; 99:4703–4707. 
[PubMed: 11930016] 

Kim et al. Page 9

Multimodal Brain Image Anal (2013). Author manuscript; available in PMC 2014 November 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 1. 
Graph representation of brain imaging data between participants. Nodes represent 

participants and edges depict relations between samples. An annotated sample is labeled 

either by −1 or +1. In this example, the negative labels indicate samples from ‘healthy older 

adults’. On the contrary, the positive labels indicate the samples from ‘E-MCI’. The 

diagnosis of the unannotated sample marked as ‘?’ is predicted by employing the graph-

based semi-supervised learning.
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Fig. 2. 
Integration scheme of four different types of brain imaging data. Each brain imaging data 

can be converted into a graph, and then multiple graphs can be combined through finding 

the optimal value of the combination coefficient.
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Fig. 3. 
Performance comparison among four types of brain imaging dataset. The y axis represents 

the average AUC and the x axis shows the date type.
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Fig. 4. 
Integration of multimodal brain imaging data. The y axis represents the average AUC and 

the x axis shows the combination of brain imaging datasets.
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Table 1

Comparison between the graph-based SSL and SVM. P-values were calculated using a Wilcoxon signed-rank 

test between performance (AUC) of the graph-based SSL and SVM.

Data type Graph-based SSL SVM P-value

Florbetapir 0.5789 (± 0.0732) 0.5825 (± 0.0372) 1.0000

FDG 0.5873 (± 0.0587) 0.5664 (± 0.0643) 0.8413

FreeSurfer 0.6576 (± 0.0905) 0.5163 (± 0.0552) 0.0159

VBM 0.609 (± 0.1059) 0.5709 (± 0.0916) 0.5476
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